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Problem Definition and Contributions Problem Definition

Problem Definition
Ti-6Al-4V alloys have been used widely in the aerospace, chemical and petroleum industry.
However, the machinability of Ti alloys is characterised by extremely rapid tool wear and short
tool life due to the high cutting temperature and the strong adhesion at the tool-chip and
tool-workpiece interface.

Tool condition monitoring

Monitoring the cutting tool performance during high speed milling of Ti-6Al-4V
alloy is a critical factor since titanium alloy is a typically difficult-to-cut material,
besides the quality of the end-product and productivity rate are highly dependent
on the functional state of the tool.
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Problem Definition and Contributions The Contribution

Key Contributions

A flexible tool wear state recognition method based on HDP-HSMM that

I provides a powerful framework for inferring arbitrarily state complexity from
data.

I does not restrict tool wear state duration distribution to a exponential form.

I achieves higher prediction accuracy than other published methods and
promising results in detecting the severe wear state.
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Model HDP-HSMM Archircture

HDP-HSMM Archircture
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HDP-HSMM based method consists of two steps:
State duration distribution and Observation distribution are constructed in a

Hierarchical Dirichlet Process first, then weak-limit approximate sampler is used
during sampling inference to get all parameters.
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Model Background topics

HSMM: θ = (π,A,B,D)
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Parameters of HSMM:

1. State Assuming the set of all the possible tool wear states is S=[1, 2, qn].

2. Initial state probability vector π = [πi] πi represents the probability of being in state qi

at time t = 1 and satisfies
∑n

i=1 πi = 1.

3. State transition probability matrix A = [aij ] aij represents the probability of transition

from state qi at time t to state qj at time t+ 1 and satisfies
∑n

j=1 aij = 1.

4. Observation distribution B = [bi(Ot)] The observed variable Ot at time t conditioned on

the hidden state qt is defined as observation distributions.

5. State duration distribution D = pj(d) The observed variable Ot at time t conditioned on

the hidden state qt is defined as observation distributions.
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Experiment setup details Overview

Overview
The experimental setup & Direction indicators of three cutting force components
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The machining parameters

Categories of tool wear state

Feature extraction
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Experiment setup details Feature extraction

Space distributions of these normalized features(mainly)

1. It is obvious that the normalized features take on a certain degree of clustering propertity .

2. There are altogether 16 signal features constitute the feature vector(without dimension

reduction) which further makes up the observed sequence.
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Experiment setup details Tool wear measurement

Identifying the flank wear profile

Image processing flow
I image collection(pictured by KEYENCE VHX-600)

I grayscale processing(grey-scale average method)

I binarization processing(set a threshold)

I extracting target zones(area,perimeter,horizontal length & vertical width,major axis &
minor axis)
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Results Iteration process & Training results

Training curve: Log Likelihood vs iteration number

HDP-HSMM can learn and converge quickly

The convergence of the EM algorithm for HSMM requires only 90 iterations and

the total training time is 3.56s (2.848ms per sample point).
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Results Iteration process & Training results

Training results

I The deeper the color, the higher the number, the more serious wear
state the tool in.

I Although there are some abnormal state changes in sequence(1250
samples), the overall state classification is still very obvious.
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Results Model Validation

Testing dataset visualization & Testing results

Summary
I The average prediction accuracy for four kinds of tool wear state in testing

samples reaches up to 95%.

I The misclassified points gathering partly in the transitions between
consecutive states.

I However,error rate on severe state (namely state 3) samples is relatively low.
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Results Comparsion with other published methods

Comparsion results
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Conclusions & Further work

Conclusion
Hindsight is Clearer than Foresight

This paper presents a new tool wear monitoring system based on the Hierarchical
Dirichlet process hidden semi-Markov model (HDP-HSMM)

I The experimental results reveal that the prediction accuracy of HDP-HSMM
model under the Poisson distribution with a conjugate Gamma prior reaches
95% in testing dataset.

I Comparison results reveal that the proposed method has relatively higher
identification rate than K-means and GMM in different tool wear state,
especially in the severe state.

I Besides, the model structure of HDP-HSMM needs fewer pre-determined
parameters, which greatly reduce the time cost for practical application in
industrial environment.

Further work

1. generalization capability on other machining parameters should be investigated.

2. Workpiece surface texture & Spindle current(power) are important features in describing

a maching process model.

3. Surface integrity, Chip conditions, &Chatter detection are interesting fields.
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