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Problem Definition

Ti-6Al-4V alloys have been used widely in the aerospace, chemical and petroleum industry.
However, the machinability of Ti alloys is characterised by extremely rapid tool wear and short

tool life due to the high cutting temperature and the strong adhesion at the tool-chip and
tool-workpiece interface.
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Tool condition monitoring

Monitoring the cutting tool performance during high speed milling of Ti-6Al-4V
alloy is a critical factor since titanium alloy is a typically difficult-to-cut material,

besides the quality of the end-product and productivity rate are highly dependent
on the functional state of the tool.

Zhengrui Tao, Meng Hu, Qinglong An, Ming Chen HDP-HSMM basded model for TCM November 24, 2018



T Problem Definition and Contributions ~ The Contribution
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Key Contributions

A flexible tool wear state recognition method based on HDP-HSMM that
» provides a powerful framework for inferring arbitrarily state complexity from
data.
» does not restrict tool wear state duration distribution to a exponential form.

» achieves higher prediction accuracy than other published methods and
promising results in detecting the severe wear state.
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LERALE Model ~ HDP-HSMM Archircture

HDP-HSMM Archircture

=1 t.=d: t=T-ds+1
t'h=d: t'2= dw+d2 ts=T
HDP-HSMM based method consists of two steps:
State duration distribution and Observation distribution are constructed in a

Hierarchical Dirichlet Process first, then weak-limit approximate sampler is used
during to get all parameters.
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Parameters of HSMM:
1.

State Assuming the set of all the possible tool wear states is S=[1, 2, gn].
2.

Initial state probability vector = = [m;] ; represents the probability of being in state g;
at time t = 1 and satisfies > ;" ; m; = 1.
3.

State transition probability matrix A = [a;;] a;; represents the probability of transition
from state g; at time ¢ to state g; at time ¢ 4 1 and satisfies Z;’L:I a;; = 1.
4.

Observation distribution B = [b;(O¢)] The observed variable Oy at time ¢ conditioned on
the hidden state g: is defined as observation distributions.
5

The observed variable O; at time t conditioned on
the hidden state g: is defined as observation distributions.
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Overview

The experimental setup & Direction indicators

Workpiece

Infrared
camera

Charge
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DynoWave

The machining parameters

periment setup details

Overview

of three cutting force components

¥ i Ca

Dynamometer

Feature extraction

Cutting speed (m/min) Feed (mm/z) Cutting depth (mm) Cutting width (mm)

Type Signal features Mathematical expression

75 0.08 0.3 1.6

Time domain

Categories of tool wear state

Mean
Root mean square (RMS)

Mean-F,, Mean-F,, Mean-F,
RMS-F,, RMS-F,, RMS-F,

H=E(x])
Xpus= HE(7)} 2
X El(il-) 112

Xy =max(px)

Standard deviation (Std) Std-F,, Std-F,, Std-F,

(max) Max-temp

Tool wear state Initial wear Normal wear Severe wear 2
VB (mm) 0.1~0.2 0.2~0.25  0.25~0.3 >0.3
ificati 1 2 3 4

Time-frequency domain (6-layer wavelet decomposition)

Chen

Meng Hu, Qinglong An, Min,

Energy ratio mean (ERM) — ppyy pp ERM-F,, ERM-F, Xy~ E(x?)lsum(x?)

(625~1250Hz)
Kurtosis mean (KM) X E[((-E(x;)/
(1250~2500Hz) KM-F,, KM-F,, KM-F,, (Std(x))?)*]-3
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periment setup details  Feature extraction

Space distributions of these normalized features(mainly)
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1. It is obvious that the normalized features take on a certain degree of clustering propertity .

2. There are altogether 16 signal features constitute the feature vector(without dimension

reduction) which further makes up the observed sequence.

rui Tao, Meng Hu, Qinglong An, Ming Chen HDP-HSMM basded model for TCM



X r Experiment setup details ~ Tool wear measurement

|dentifying the flank wear profile
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Image processing flow
image collection(pictured by KEYENCE VHX-600)

grayscale processing(grey-scale average method)
binarization processing(set a threshold)

extracting target zones(area,perimeter,horizontal length & vertical width,major axis &
minor axis)
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XEiALY Results  Iteration process & Training results

Training curve: Log_Likelihood vs iteration number
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The convergence of the EM algorithm for HSMM requires only |90 iterations and
the total training time is [HBBBI(2.848ms per sample point).
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Results Iteration process & Training results

Training results
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» The deeper the color, the higher the number, the more serious wear
state the tool in.

» Although there are some abnormal state changes in sequence(1250
samples), the overall state classification is still very obvious.
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a Results  Model Validation

Testing dataset visualization & Testing results

Actual state
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» The average prediction accuracy for four kinds of tool wear state in testing
samples reaches up to 95%.

» The misclassified points gathering partly in the transitions between
consecutive states.

> However,error rate on severe state (namely state 3) samples is relatively low.
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Results ~ Comparsion with other published methods

Comparsion results
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Method | Initial wear Normal wear Severe wear Breakage Avg.

HDP-HSMM 0.924
K-means 0.922 0.881 0.873 0.804 0.87
GMM 0.820 0.867 0.835 0.703 0.806
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XELALE Conclusions & Further work

Conclusion

Hindsight is Clearer than Foresight

This paper presents a new tool wear monitoring system based on the Hierarchical
Dirichlet process hidden semi-Markov model (HDP-HSMM)

» The experimental results reveal that the prediction accuracy of HDP-HSMM
model under the Poisson distribution with a conjugate Gamma prior reaches
95% in testing dataset.

» Comparison results reveal that the proposed method has relatively higher
identification rate than K-means and GMM in different tool wear state,
especially in the severe state.

> Besides, the model structure of HDP-HSMM needs fewer pre-determined

parameters, which greatly reduce the time cost for practical application in
industrial environment.

1. _ on other machining parameters should be investigated.

2. Workpiece surface texture & Spindle current(power) are important features in describing
a maching process model.

3. | Surface integrity, Chip conditions, &Chatter detection are interesting fields.
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