Hierarchical Dirichlet process hidden semi-Markov model-based method for tool wear estimation

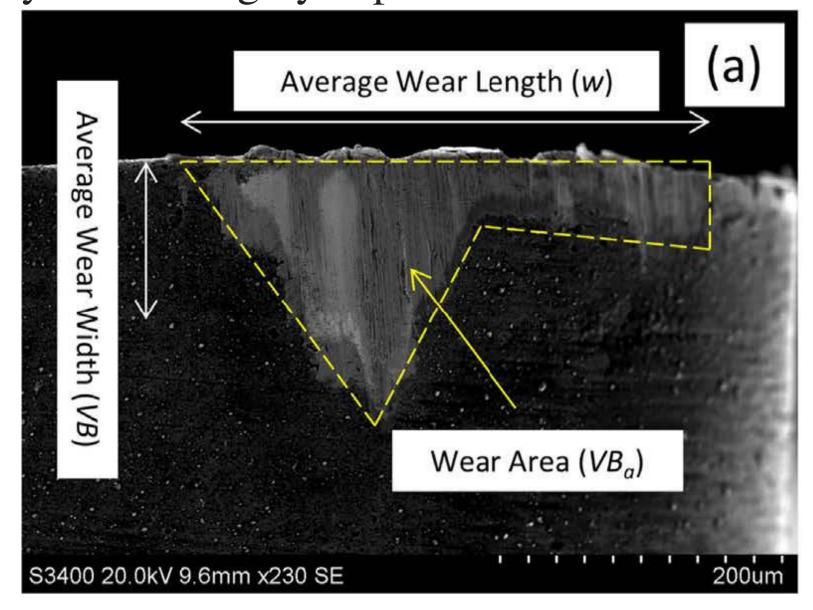
SHANGINIA 1896 AO TONG UNITED

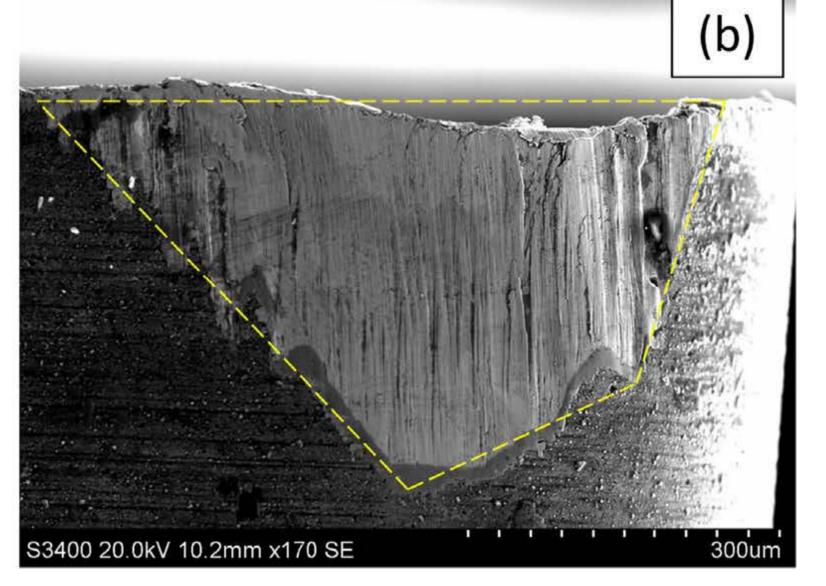
Zhengrui Tao¹, Gongyu Liu¹, Qinglong An^{1*}, Ming Chen¹

School of Mechanical Engineering, Shanghai Jiao Tong University, shanghai, 200240, PR China

Problem Definition and Contribution

Goal: Monitoring the cutting tool performance during high speed milling of Ti-6Al-4V alloy is a critical factor since titanium alloy is a typically difficult-to-cut material, besides the quality of the end-product and productivity rate are highly dependent on the functional state of the tool.



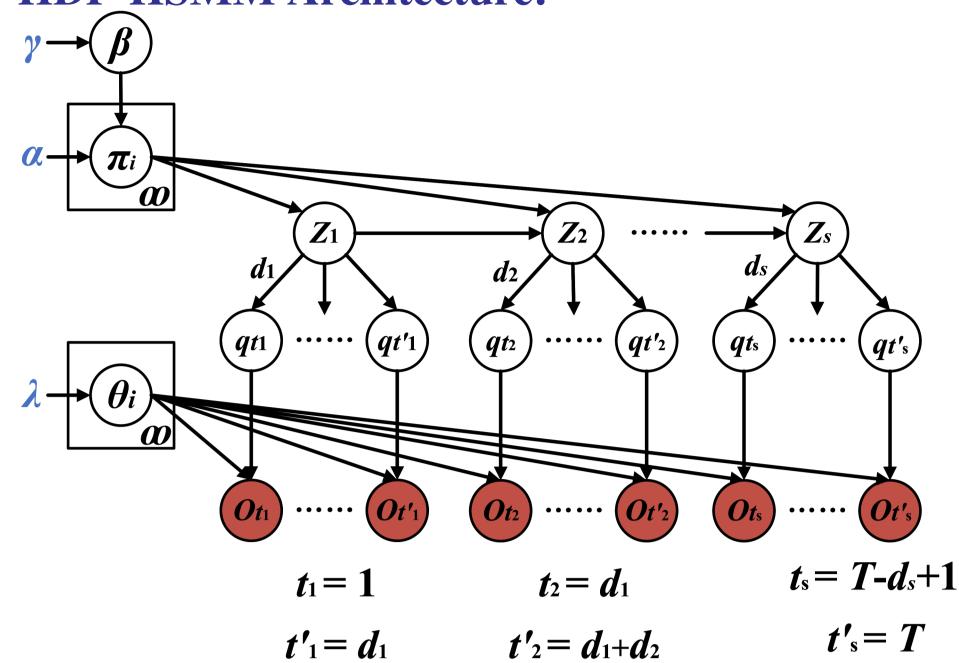


Key Contributions: A flexible tool wear state recognition method based on HDP-HSMM that

- provides a powerful framework for inferring arbitrarily large state complexity from data.
- does not restrict state duration distributions to a geometric form.
- presents an efficient sampling inference method: weak-limit approximate sampler.
- achieves higher prediction accuracy than other published methods and promising results in detecting the severe wear state.

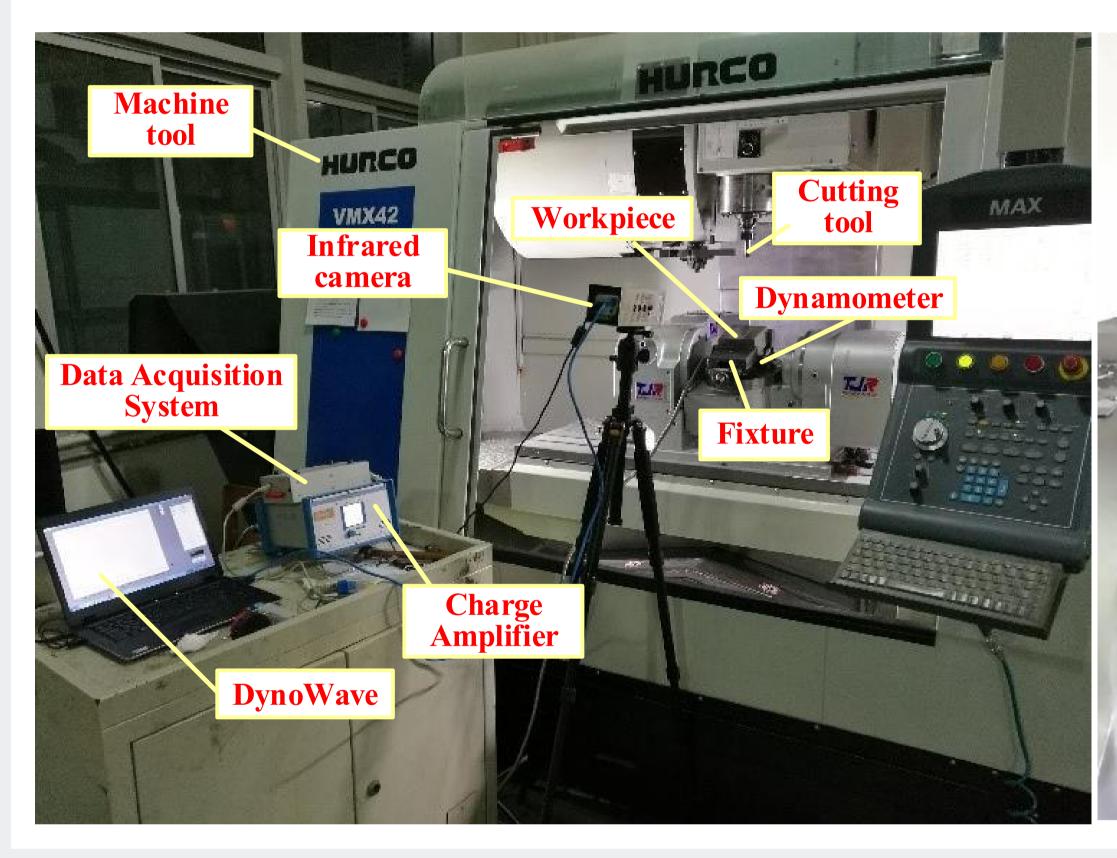
Method

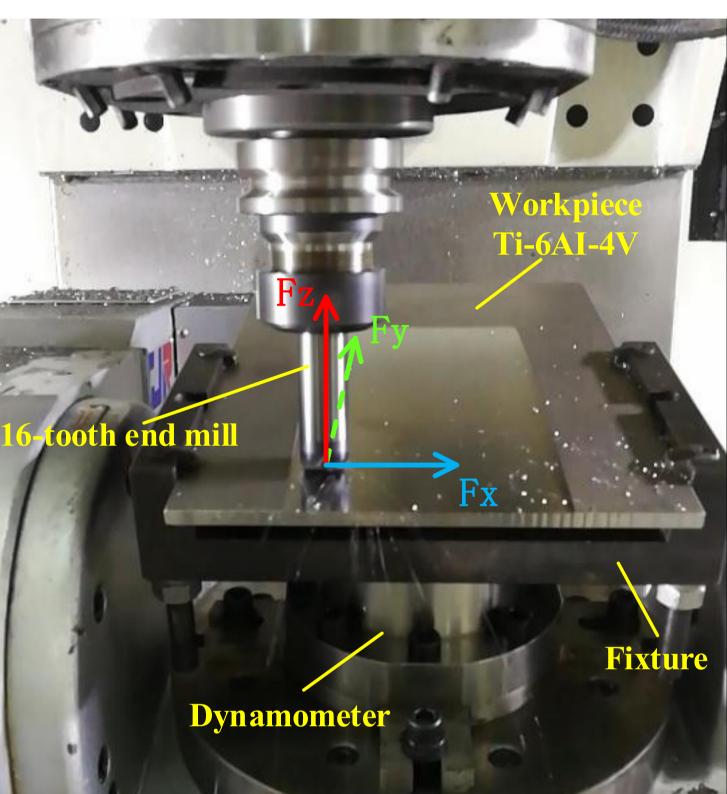
HDP-HSMM Architecture:



• HDP-HSMM based method consists of two steps: HSMM parameters are sampled in a Dirichlet process¹ first, then the Gibbs sampling algorithm² is used during sampling loop to get all potential variables.

Experiment setup





Cutting speed (m/min) Feed (mm/z) Cutting depth (mm) Cutting width (mm) 75 0.080.3 1.6 **Feature extraction** Signal features **Type Mathematical expression** Time domain Mean-F_x, Mean-F_z Mean $\mu = E(|x_i|)$ RMS-F_x, RMS-F_v, RMS-F_z Root mean square (RMS) $x_{RMS} = \{E(x_i^2)\}^{1/2}$ **Standard deviation (Std)** Std-F_x, Std-F_v, Std-F_z $x_{Std} = \{E[(|x_i|-\mu)^2]\}^{1/2}$

The machining parameters

Time-frequency domain (6-layer wavelet decomposition)

Max-temp

Energy ratio mean (ERM) (625~1250Hz) Kurtosis mean (KM) (1250~2500Hz)

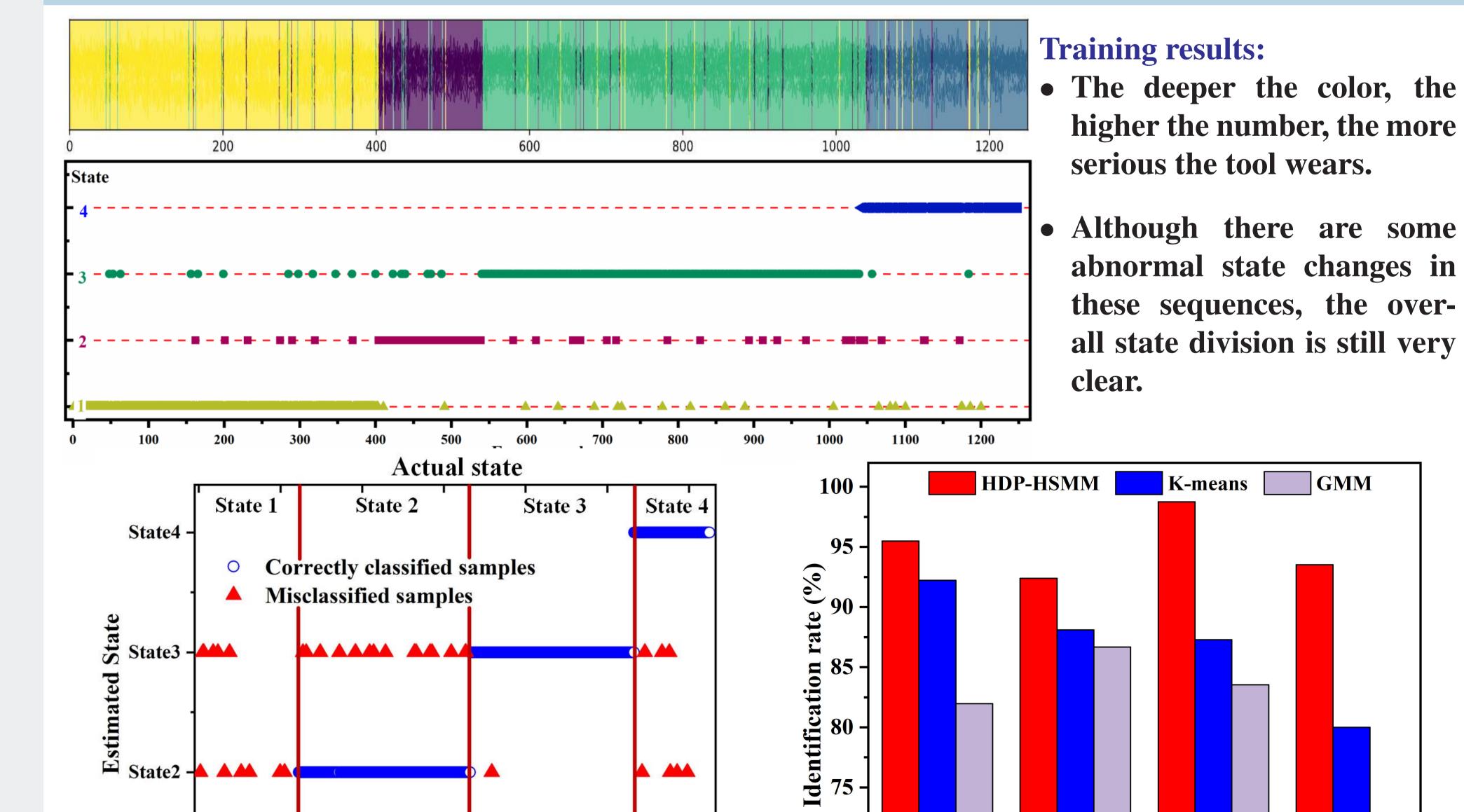
Maximum (max)

ERM-F_x, ERM-F_y, ERM-F_z $x_{ERM} = E(x_i^2) / sum(x_i^2)$ KM-F_x, KM-F_y, KM-F_z, $x_{KM} = E[((x_i - E(x_i)) / (Std(x_i))^2)^4] - 3$

 $x_{Max} = max(|x_i|)$

Results

State1



70 -

Frame number **Initial wear** Severe wear Breakage Method Normal wear Avg. 0.95 **HDP-HSMM** 0.954 0.924 0.988 0.935 0.922 0.881 0.873 0.804 0.87 K-means **GMM** 0.867 0.835 0.703 0.806 0.820

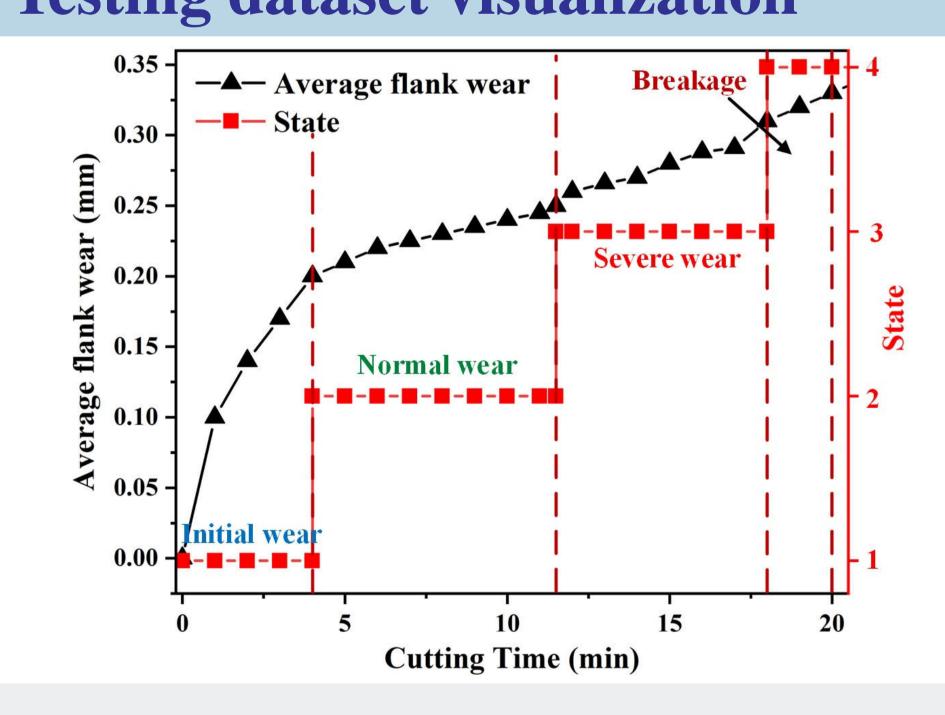
1000

Testing results & Comparsion with other published methods:

Initial wear Normal wear Severe wear

• The numbers represent the classification rate (the higher the better).

Testing dataset visualization



Conclusion and Future work

We present a **new real-time** tool wear monitoring system for high speed milling of TC4 alloy.

Future work: Collect signals from other machining parameters to further investigate generalization capability.

References

- [1] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: The all convolutional net," *arXiv:1412.6806*, 2014.
- [2] N. Otsu, "A threshold selection method from gray-level histograms," *Automatica*, vol. 11, no. 285-296, pp. 23–27, 1975.

Project Webpage: Code&Dataset&Model