Introduction	Distributed multi-point front cutting edge	Experimental setup	Results and discussion	Conclusion	Acknowledge

Cutting Performance Evaluation of Helical Milling Specialized Tool for CFRP/Titanium Alloy

Zhengrui Tao¹ Qinglong An¹ Ming Chen¹

¹School of Mechanical Engineering Shanghai Jiao Tong University

September 26, 2018

→ ∃ →

Introduction	Distributed multi-point front cutting edge	Experimental setup O	Results and discussion	Conclusion O	Acknowledge O
Outline					

- Research motivation
- Kinematics of helical milling
- Distributed multi-point front cutting edge
 - Simulation of chip segmentation at the front cutting edge
 - Chip shape simulation and cutting ratio analysis

Experimental setup

4 Results and discussion

- Tool wear
- Burrs
- 5 Conclusion

6 Acknowledge

→ ∃ →

Introduction	Distributed multi-point front cutting edge	Experimental setup O	Results and discussion	Conclusion O	Acknowledge O
Introduc	tion				

- What is helical milling: simultaneously of a peripheral cut on the peripheral cutting edge with a discontinuous cut, and a frontal cut on the axial cutting edge with a continuous cut
- What is CFRP/Titanium Alloy: Dissimilar material stack-ups of CFRP and titanium are used for high performance structural components

Merits of helical milling for CFRP/Titanium alloy holemaking

Low burr formation, low process forces as well as good chip transportation

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

Introduction	Distributed multi-point front cutting edge	Experimental setup	Results and discussion	Conclusion	Acknowledge
000	0000		00		

Research motivation

			Tool wear in helical	milling		_		
Paper	Work material/ Tool material/ Coating	Wear monitoring technique	Cutting edge of wear investigation	Wear type	Wear mechanisms	Tool life criteria	Number of holes machined	
Qin et al.	Ti-6Al-4V/ Tungsten carbide/ TiAlN; Diamond	Scanning electron microscope, digital microscope and energy dispersive X-ray	-	Flank wear	Adhesive wear, oxidation wear, coating flaking and chipping	VB = 0.2 mm	88 holes (TiAlN-cooted tool); 70 holes (diamond-cooted tool)	
Voss et al.	CFRP/ Cemented carbide end mill/ Diamond	3D microscopy	Frontal and peripheral cutting edges	Flank wear	Diamond coating flanking at peripheral cutting edges		1000 holes	
Surface roughness levels in helical milling studies								
Paper	Measurement system				Work material		Roughness [µm]	
Sultana et al.		Form Talysurf profilometer			CFRP	13-16,6	(super abrasive diamond tool)	
Qin et al.	Sur	face roughness & contour machine		Cr12 die steel (35 HRC)			0.40-1.56	
		Machine, tool, alloy	and lubrication in heli	cal millin	g of CFRP-Ti stacks			
Paper	Machine tool	Tool materi	al/type		CFRP/Ti alloy		Lubrication condition	
Wang et al.	DMC75V linear 5-axis high TiAIN-coated carbide tool speed machining centre		CFRP/Ti6Al4V stacks		ks	Dry		
Zhou et al.	Orbital drilling unit fixed I. to TiAlN-coated solid hard alloy (YG8) tool KUKA360-1 robot designed by the authors for CFRP/Ti orbital drillin			CFRP/Ti alloy (TC4-DT) stacks	Blowing air through tool cooling holes for Ti chips removal and vacuum dust removal system for CFRP chips		

Current problems:

- There is no in-depth and systematic research on the specialized tool, and the traditional end mills are still used mainly.
- Problems such as large exit burrs, poor hole wall quality, and short tool life in the hole machining of aerospace dfficult-to-machine materials are prone to occur, which cannot meet the Processing requirements.

Introduction	Distributed multi-point front cutting edge	Experimental setup	Results and discussion	Conclusion	Acknowledge
000					

Kinematics of helical milling

Kinematic parameters:

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

(b)→Multi-point front cutting edge (top view)

Anaiysis:

- The chip size can be reduced, the cutting force can be effectively reduced, and the smoothness of the chip removal can be effectively improved.
- The cutting ratio of the periphery cutting edges can be reduced, and the service life of the periphery cutting edges can be fully improved.

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

Simulati	on of chip segmentati	ion at the fro	ont cutting edg	е	
Introduction	Distributed multi-point front cutting edge	Experimental setup O	Results and discussion	Conclusion O	Acknowledge O

Process:

Establish the trajectory equation of the point motion of the tool cutting edges and simulate it with Matlab

• Geometrical relations to define the trajectory in helical milling

Numerical simulation software

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

• Comparsion of specialized tool and end mill's cutting edges trajectory (each color represents the front cutting edge of single tooth)

Conclusion:

It can be seen that the trajectory of the specialized tool cutting edges is superimposed, while the end cutting edge of the end mill has a parallel relationship, and there is no help to chip segamentation.

Introduction	Distributed multi-point front cutting edge ○○○●	Experimental setup O	Results and discussion	Conclusion O	Acknowledge O
Chin sh	ane simulation and cu	tting ratio ar	nalveis		

- Through the chip shape simulation, the different functions of the end and side edges are obvious.
- The respective machining ratios during the helical milling process can be analyzed.
- The simulation of the chip shape is obtained by performing a Boolean operation.

Conclusion:

- The undeformed chip of the end mill is like a disc, and the undeformed chip obtained by the specialized tool is two rings.
- The two rings are composed of two half rings, the joint is weak. It is easy to separate during processing, so the final chip size is small and the chip segmentation is good.

Introduction	Distributed multi-point front cutting edge	Experimental setup	Results and discussion	Conclusion	Acknowledge
		•			
Experim	ental setun details				

Experimental setups and helical milling cutters used in the experiment

Build-up of the CFRP-Ti layer compound and cutting parameters

CFRP 6 mm Adhesive 11 mm	Lay Up: UD [0/+45/+90/-45] Fiber: Sigratex 320C Matrix: Bakelite Rütapox Adhesive: Henkel Hysol 9396	material	spindle rotation speed (rpm)	Tangential feed (mm/tooth)	Axial feed (mm/re)
Titanium-	<u>Titanium:</u> TiAl6V4	CFRP	3000	0.06	0.4
<u>ы 50 µm</u>	according to AMS4911J	TiAl6V4	1000	0.06	0.6

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

Introduction	Distributed multi-point front cutting edge	Experimental setup O	Results and discussion ●○	Conclusion O	Acknowledge O
Telefores					

Tool wear

Conclusion:

- The two-edge end mill's maximum wear amount reaches 0.4 mm. While the maximum wear of the specialized tool is only 0.1 mm, and the wear is even, but it is worth noting that there is a micro-disintegration phenomenon at the edge
- The front cutting edge of the helical milling cutter encountered crater, adhesion, and chipping.

Comparesion of the machining quality of the specialized tool and the end mill

Conclusion:

- The entrance burr of the end mill machining hole is large, and the outlet tears.
- In the specialized tool machining quality is superior to the end mill

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University)

Introduction	Distributed multi-point front cutting edge	Experimental setup O	Results and discussion	Conclusion •	Acknowledge O
Conclus	ion				

- Helical milling cutters based on the principle of chip separation enable effective chip separation by means of distributed multi-point front cutting edges. The chip size is smaller than the end mill.
- The tool life of the helical milling cutter is much longer than that of the drill cutter under the same cutting conditions in hole-making of CFRP-Ti stacks.
- The multi-point design of the specialized tool front cutting edge can realize the burr-free processing of titanium alloy under dry cutting conditions. The composite material hole has no delamination and the machining quality meets the engineering application requirements.

伺 と く ヨ と く ヨ と

Introduction	Distributed multi-point front cutting edge	Experimental setup	Results and discussion	Conclusion	Acknowledge
					•

hank You

Zhengrui Tao, Qinglong An, Ming Chen(Shanghai Jiao Tong University) Evaluation of Helical Milling Specialized Tool for CFRP/Titanium Alloy

< ロ > < 回 > < 回 > < 回 > < 回 > ...

Ξ.